Phosphorescent sensor for biological mobile zinc.
نویسندگان
چکیده
A new phosphorescent zinc sensor (ZIrF) was constructed, based on an Ir(III) complex bearing two 2-(2,4-difluorophenyl)pyridine (dfppy) cyclometalating ligands and a neutral 1,10-phenanthroline (phen) ligand. A zinc-specific di(2-picolyl)amine (DPA) receptor was introduced at the 4-position of the phen ligand via a methylene linker. The cationic Ir(III) complex exhibited dual phosphorescence bands in CH(3)CN solutions originating from blue and yellow emission of the dfppy and phen ligands, respectively. Zinc coordination selectively enhanced the latter, affording a phosphorescence ratiometric response. Electrochemical techniques, quantum chemical calculations, and steady-state and femtosecond spectroscopy were employed to establish a photophysical mechanism for this phosphorescence response. The studies revealed that zinc coordination perturbs nonemissive processes of photoinduced electron transfer and intraligand charge-transfer transition occurring between DPA and phen. ZIrF can detect zinc ions in a reversible and selective manner in buffered solution (pH 7.0, 25 mM PIPES) with K(d) = 11 nM and pK(a) = 4.16. Enhanced signal-to-noise ratios were achieved by time-gated acquisition of long-lived phosphorescence signals. The sensor was applied to image biological free zinc ions in live A549 cells by confocal laser scanning microscopy. A fluorescence lifetime imaging microscope detected an increase in photoluminescence lifetime for zinc-treated A549 cells as compared to controls. ZIrF is the first successful phosphorescent sensor that detects zinc ions in biological samples.
منابع مشابه
Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors.
Despite the promising photofunctionalities, phosphorescent probes have been examined only to a limited extent, and the molecular features that provide convenient handles for controlling the phosphorescence response have yet to be identified. We synthesized a series of phosphorescence zinc sensors based on a cyclometalated heteroleptic Ir(III) complex. The sensor construct includes two anionic c...
متن کاملReaction-Based Probes for Imaging Mobile Zinc in Live Cells and Tissues
Chelatable, or mobile, forms of zinc play critical signaling roles in numerous biological processes. Elucidating the action of mobile Zn(II) in complex biological environments requires sensitive tools for visualizing, tracking, and manipulating Zn(II) ions. A large toolbox of synthetic photoinduced electron transfer (PET)-based fluorescent Zn(II) sensors are available, but the applicability of ...
متن کاملPeptide-based Targeting of Fluorescent Zinc Sensors to the Plasma Membrane of Live Cells.
Combining fluorescent zinc sensors with the facile syntheses and biological targeting capabilities of peptides, we created green- and blue-emitting probes that, (i) are readily prepared on the solid-phase, (ii) retain the photophysical and zinc-binding properties of the parent sensor, and (iii) can be directed to the extracellular side of plasma membranes in live cells for detection of mobile z...
متن کاملCyclometalated iridium(III) complexes for phosphorescence sensing of biological metal ions.
Phosphorescence signaling provides a valuable alternative to conventional bioimaging based on fluorescence. The benefits of using phosphorescent molecules include improved sensitivity and capabilities for effective elimination of background signals by time-gated acquisition. Cyclometalated Ir(III) complexes are promising candidates for facilitating phosphorescent bioimaging because they provide...
متن کامل3D Path Planning Algorithm for Mobile Anchor-Assisted Positioning in Wireless Sensor Networks
Positioning service is one of Wireless Sensor Networks’ (WSNs) fundamental services. The accurate position of the sensor nodes plays a vital role in many applications of WSNs. In this paper, a 3D positioning algorithm is being proposed, using mobile anchor node to assist sensor nodes in order to estimate their positions in a 3D geospatial environment. However, mobile anchor node’s 3D path optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 45 شماره
صفحات -
تاریخ انتشار 2011